
        CALCULATING PLANETARY ORBITS ABOUT THE SUN 
 
 
One of the earliest and most significant contributions of  Newtonean mechanics was the 
verification of Kepler’s three laws of planetary motion. We want here to briefly go 
through the mathematics which allowed Newton to derive the properties of planetary 
motion about the sun. Our starting point is the following schematic- 
 

               
  
We have here a planet of mass m moving in an orbit about the sun of much larger mass 
M. The polar coordinates used are the radial distance r between the centers of the two 
masses and θ the angle r makes with respect to the symmetry axis x. In terms of 
Newton’s second law and the universal law of gravitation one has the two governing 
equations- 
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The second of these equations is just a conservation of angular momentum statement and 
is equivalent to saying – 
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This last result also says that the area swept out in unit time by a planet moving about the 
sun is h/2 (Kepler’s 2nd Law). Eliminating vθ from the first equation above we have- 
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Integrating once we get- 
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If we multiply this result by m we have the conservation of energy statement - 
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where E is the constant total energy of the planet per unit mass and –GMm/r the potential 
energy. Dividing this equation by m/2 and re-substituting for vθ yields- 
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Next letting u=1/r and noting that vr=-h(du/dθ), one finds- 
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, where α=GM/h2 and β= sqrt[α2+(2E/h2)]. We can integrate this last result once more to 
get- 
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 Now recalling from the integral tables that- 
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we find that the planet trajectory is given by the conic section- 
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where Δ=1/α2=h2/GM and e=β/α=sqrt[1-2h2|E|/(GM)2 ] the eccentricity of the conic 
section defined by this last equation. The constant in the angle has been adjusted so as to 
make the x axis a symmetry axis and the near point(perigee) from the central mass M 
occur when θ=π.  
 
When e<1, this trajectory will be an ellipse (Kepler’s 1st Law) whose eccentricity is given 
by- 
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,where A and B are the semi-major and semi-minor axes  of the ellipse. A little 
manipulation shows that A=(ra+rp)/2=Δ/(1-e2) , where ra and rp are the largest and 
smallest distance from the sun the planet finds itself at during its trajectory . 
 
To calculate the period τ of the elliptic orbit, we recall that the area of an ellipse equals     
πAB =πA2sqrt(1-e2) and that the area swept out per time is h/2 (from Kepler’s 2nd law). 
Thus- 
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But from the energy equation given earlier we know at perigee vr=0 so that- 
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Therefore we have that the angular momentum term must equal- 
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Combining these results then produces- 
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Substituting this value for h into the τ equation yields the desired result- 
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This is Kepler’s famous third law of planetary motion which says the square of a planet’s 
orbit period τ is proportional to the third power of the semi-major axis A of its elliptical 
path.  For the special case of a circular orbit of radius A=R one has  an orbit period equal 
to- 
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If we look at the earlier given energy equation as a potential well problem, we can see 
that if a mass m has total energy E=0 at r=∞, then  the kinetic energy at perigee will be- 
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This is equivalent to saying that the speed at perigee will be- 
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This last result is recognized as the escape velocity from mass M by a smaller mass m. 
For the case of escaping from the earth to infinity one has GM=gR2and rp=R the earth 
radius. Hence to escape from the earth’s surface will require an effective speed of- 
 

               sec/2.11371.68066.922 kmgRv  =36.7 thousand ft/sec 

 
To get out of the solar system will require a much higher speed than this because of the 
sun much larger mass. Note that the speed of a satellite in a near earth circular orbit will 
be less by a sqrt(2). In other words 7.9 km/sec or about 26 thousand foot per second for 
the earth. 
 
When e>1 the trajectory will be in form of a hyperbola. Casting the r=Δ/[1-ecos(θ)] 
equation into Cartesian coordinates when e>1 produces a standard hyperbola- 
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and ‘a’ is the distance from the directrix , which crosses the negative part of the x axis at 
right angles, to the center of M. Here x=a+rcos(θ) , y=rsin(θ), and the eccentricity is 
e=r/[a+rcos(θ)]. 
 


