
COMPUTER CONSTRUCTION OF THE FIVE PLATONIC 
CONVEXPOLYHEDRA USING A GUIDING SPHERE                           

 
 

It is well known since the time of the ancient Greeks that there are just five solid convex polyhedra 
whose faces are in  the form of regular polygons. They are the Tetrahedron, the Hexahedron, the 
Octahedron, the Dodecahedron, and the Icosahedron. Collectively they are referred to as the Platonic 
Solids. Euler showed quite early that the number of vertices V, the number of edges E, and the number 
of faces F of each of these polyhedra has is given by the formula- 
 
                                                    V-E+F=2 
 
Thus the simple cube (Hexahedron) has eight vertices and six faces. Therefore there must be 8+6-2=12 
edges. An interesting property of these Platonic Solids is that a centered sphere will have all of the 
vertices of the polyhedron lie on the sphere’s surface. This suggests that one can construct any of these 
Platonic Solids by connecting all vertex points on the sphere by straight lines . The regular spacing of 
the vertices on the sphere is determined by the number of faces of the Platonic Solid. The vertex 
placement is easiest to accomplish using a spherical coordinate system[r,θ,φ]  and then converting the 
vertex location to Cartesian coordinates [x,y,z] via the transformations- 
 
                       x=rsin(θ)cos(φ),   y= rsin(θ)sin(φ), and   z=rcos(θ) 
 
, where θ is the polar angle and φ the azimuthal angle. As a first demonstration, consider the 
Hexahedron and place its eight vertices at r=1 , φ=±π/4 , ±3π/4 and equal to both θ1=π/6 and θ2=5π/6. 
Converting to Cartesian coordinates one has the eight vertices located at- 
 
                         [x,y,z]=[±1/2sqrt(2), ±1/2sqrt(2),±sqrt(3)/2] 
 
Note, as expected, the distance from the sphere center to any of these vertices is d=sqrt(1/8+1/8+3/4)=1. 
Connecting neighboring vertices we generate six squares forming the Hexahedron surface. The squares 
have side length s=2/sqrt(3) which is consistent with the length of 2 of the cube’s diagonal. Using the 
MAPLE computer command- 
 
     with(plots): 
     polyhedraplot([0,0,0], polytype=hexahedron, style=PATCH, axes=none, 
     scaling=CONSTRAINED); 
 
we obtain the Hexahedron graph- 



                                           
   
 
Next, let us look at the Tetrahedron which is another of the Platonic solids. It has just four vertices and 
faces in the form of equilateral triangles. This time locating the vertices on the surface of a sphere of 
radius R is a bit more tricky. Clearly one vertex can be placed at the north pole of the sphere so that the 
remaining three are spaced at  intervals of 2/3. However the remaining three vertices do not lie on 
the 30deg south latitude as a cursory examination would suggest. Rather they are found at polar angle 
=arcos(-1/3) =121.634 deg. Converting to Cartesian coordinates, the vertices are found for a radius R 
sphere at- 
 
[0, 0, R], [s/sqrt(3),0,-s sqrt(2/3)/4], [-s/2 sqrt(3)), s/2, -s sqrt(2/3)/4], [-s/(2sqrt(3),-s/2,-s sqrt(2/3)/4] 
 
The distance from the sphere center to any of the vertices will be R=sqrt(3/2) s/2 and the sides of each of 
the equilateral triangles formed have length of exactly s=1. The area of any of the four faces of the 
Tetrahedron is found to be A=sqrt(3)/4. The height of the Tetrahedron is shown from the above given 
coordinates to be H=sqrt(2/3)). Hence the Tetrahedron volume will be- 
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Using our computer program- 
 
                     polyhedraplot([0,0,0], polytype=tetrahedron, style=PATCH, 
                     scaling=CONSTRAINED, axes=none); 
 



we obtain the figure- 

                     
     
      
Next we examine the Octahedron which has eight faces in the form of equilateral triangles. The six 
vertices on a unit radius sphere are easy to find by placing two of the vertices at the poles of the sphere 
and the four remaining vertices separated by π/2 radians from each other along the equator. In Cartesian 
coordinates the vertices lie at- 
 
                                                      [0,0,±1],[±1,0,0] , [0,±1,0] 
        
Note again, the distance from the sphere center to each of the vertices of the Octahedron is just one. A 
graph of the Octahedron follows- 

                
                      
  



Each  equilateral triangle has side length s=2sin(π/4)=sqrt(2) so that the total area of the solid is – 
 
                                   A=8{sqrt(3)/4}s2=2sqrt(3)s2=4sqrt(3) 
 
To calculate the volume of a Octahedron we look at it as equivalent to eight triangular base pyramids of 
lateral side-length of 1 extending towards the sphere center and then use the pyramid formula- 
 
  V=8{ area of base triangle · pyramid height}/3=(8/3){sqrt(3)/2 ·1/sqrt(3)}= sqrt(2)s3/3=4/3  
 
If the guiding sphere radius r is different from unity one needs to replace the side length s by rs in the 
above results. 
 
 
The next Platonic Solid we examine is the Dodecahedron which consists of twelve pentagonal 
faces(F=12), a total of twenty vertices(V=20), and thirty edges(E=30). The Euler equation V-E+F=20-
30+12=2 again holds. To construct this surface via computer we first need to locate the twenty vertices 
distributed at equal distance from each other about the sphere surface. To do so takes a bit more effort 
than in the earlier examples. This time point designations involve the Golden ratio f={1+sqrt(5)}/2. 
After some manipulations and choosing a sphere radius r=sqrt(3), one finds one possible distribution to 
be- 
 
                            [±1,±1,±1], [±f,0,±1/f], [0,±1/f,±f], and [±1/f,±f,0]  
 
where [x,y,z] are the Cartesian coordinates of the twenty points. A computer plot yields- 
 
 

                     
The surface area of each of the twelve pentagon faces of the Dodecahedron  equals – 
 
                   Apent=(5/4)s2/tan(π/5)={(5/4)(1/sqrt(7-4f)}s2=1.720477 s2 



    
so that the total surface area of a Dodecahedron is just twelve times this amount.  
 
One also can construct models of the various Platonic Solids by the use of 2D cardboard 
cut-outs. Here is an example of such a cardboard pattern which when folded together 
produces a Dodecahedron – 

 
 
With plywood or wood veneer cladding , such models can be made quite rigid and last 
for years as demonstration tools in math classes. There is no limit to the size of such 
structures and thus they may find  application for certain public art sculptures. Any one of 
these would be an improvement over the “Alachua (alias French Fries from Hell)” 
sculpture decorating our science library here at the University of Florida. 
 
As the final of the five Platonic solids we look at the Icosahedron. It is composed of 
twenty equilateral faces (F=20), has just twelve vertices(V=12), and thirty edges (E=30). 
The [x,y,z] coordinates of equally spaced vertices on a sphere of radius r=sqrt(1+f2), 
where again f={1+sqrt(5)}/2, are as follows- 
 
                               [0,±1,±f], [±1,±f, 0], and [±f,0,±1] 
 
A graph of this twelve-cornered solid looks like this- 
 



                    
Since the area of any equilateral triangle of sides s is always A=s2sqrt(3)/4, the total 
surface area of the Icosahedron will be 5s2sqrt(3). 
 
Several years ago I constructed an Icosahedron model from 20 equal sized equilateral 
triangles made of birch wood and glued together by the use of small wood stabilizer 
blocks cut to equal the 138.190  interior dihedral angle between neighboring surfaces. The 
edges where filled and smoothed out with wood putty and painted black. The resultant 
structure looks like this- 
 



                  
   
            
The structure is quite sturdy and has lasted some five years without any damage despite of 
considerable handling. Note the perfectly fitting pentagonal column to which the Icosahedron is 
connected. 
 
Although there are no additional Platonic Solids than the five discussed above, there are many 
variations involving tessellated polytropes and the replacement of a single polygon faces by 
several different ones. Good examples of such are soccer balls which have their outer surfaces 
made of a combination of regular pentagons and regular hexagons. The famous buckyballs of 
physical chemistry have a near spherical structure and consist of 60 carbon atoms arranged as 20 
hexagons plus 12 pentagons. By taking one of the Platonic Solids and placing pyramids above 
each face or raising a sphere surface in a spatially periodic manner, an infinite number of other 
3D solids can be generated. Certain configurations resemble 3D stars and often have a pleasing 
appearance. Here are two examples- 
 

                     



  
 
 
One of the simplest of such star like polytropes can be constructed by placing pyramids 
of height h and square base b2 upon the six square faces of a cube of volume b3. The 
volume of such a six-pointed star is- 
 
                                               V=b2{b+2h} 
 
and its surface area is- 
 
                                          S=12bsqrt(h2+b2/4) 
 
To graph this star via computer one imagines two concentric spheres of radius 
r1=bsqrt(3)/2 and radius r2=h+b/2 and places the eight vertices [±b/2,±b/2,±b/2] on the 
inner sphere and the six vertices [±(h+b/2,0,0], [0,±(h+b/2),0] and [0,0,±(h+b/2)] on the 
outer sphere. Connecting neighboring vertices by straight lines then leads to the computer 
command- 
 
with(plots); 
polygonplot3d({[[0,0,7],[-1,1,1],[1,1,1],[1,-1,1],[-1,-1,1],[-1,1,1]],[[0,0,-7],[-1,1,-1],[1,1,-
1],[1,-1,-1],[-1,-1,-1],[-1,1,-1]],[[0,7,0],[1,1,-1],[1,1,1],[-1,1,1],[-1,1,-1],[1,1,-1]],[[0,-
7,0],[1,-1,-1],[1,-1,1],[-1,-1,1],[-1,-1,-1],[1,-1,-1]],[[7,0,0],[1,1,-1],[1,1,1],[1,-1,1],[1,-1,-
1],[1,1,-1]],[[-7,0,0],[-1,1,-1],[-1,1,1],[-1,-1,1],[-1,-1,-1],[-1,1,-
1]]},axes=none,scaling=constrained,title=` VIEW OF A HEXSTAR`); 
 
 
which produces the polytrope shown- 
 



                    
   
In this figure we have set b=2 and h=6. Setting up the calculation procedure for this and 
other related tessellated solids is a good exercise in mental 3D visualization involving 
rotations and symmetry. Notice the shape looks something akin to a medieval mace 
(flail). These were very effective weapons for close combat because a great deal of 
momentum could be imparted to such a spiked ball when attached to a swinging rod via a 
short chain. The momentum carried by its large central mass allowed the spikes to 
penetrate most chainmail armor. Guns of course made such weapons obsolete. 


