
                          GENERATING NUMBER SEQUENCES  
    
 
A standard sequence can be represented by a horizontal line of  elements f[n] , where f[n] is 
expressed as a function of n. One of the simplest of such sequences is given by the formula- 
 
                              1]1[1][]1[  ftosubjectnfnf  
 
, where the square bracket represents the subscript of  f. The formula  produces the positive integer 
sequence- 
 
                                 S={1, 2, 3, 4, 5, 6, 7, 8, 9,…} 
 
In other words, all positive integers.  Another very simple sequence is given by the function 
f[n]=sin(nπ/2) which produces- 
 
                                S={1, 0, -1, 0, 1, 0, -1, 0, 1, 0, …} 
Here the elements are cyclic with the four element sequence {1 ,0, -1, 0} repeating forever. 
Historically , perhaps the best known sequence is the Fibonacci sequence introduced by          
Leonardo of Pisa in his 1202 book “Liber Abaci  “. This sequence reads- 
 
                                  S={1, 2, 3, 5, 8,13, 21, 34,…} 
 

      and is defined by the formula- 
 
                        f[n+2]=f[n+1]+f[n]       with      f[1]=1 and  f[2]=2 
 
 
The above examples represent just three of an infinite number of other sequences. We want here to 
examine some these other, not so obvious , sequences. 
 
Our starting point will be those sequences defined by the iteration formula- 
 
                                  f[n+1]=F(f[n])  subject  to f(1)=1 
 
, where F represents a specified function of f[n]. Take the sequence- 
 
                                  S={ 1, 2, 5, 26, 677,…} 
 
What is the next number? It is clear that things grow very rapidly and that  2=12+1 5=22+1, 26=52+1, 
and  677=262+1. This fact at once produces the generating formula- 
 
                                      f[n+1]=f[n]2+1       with  f[1]=1 
 
the next term in the sequence will be f[6]=458330. The function F(f[n]) is here f[n]2+1. 
 



Another very important sequence is- 
 
                                   S={1, 2, 6, 24, 120, 720} 
 
Most readers will recognize that here f[n]=n!, the factorial of the  integers 1 , 2, 3, 4, 5,…etc.. That 
is, f[1]=1, f[2]=2, f[3]=6, etc.. We have the generating formula - 
 

                                      f[n+1}=(n+1)!=
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Since the division of two factorials produces a positive integer as long as the term in the numeratore 
is larger than the denominator, one can produce numerous other sequences based on n factorials. 
One interesting one which we have come up with defines a new sequence  by- 
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This yields- 
 
           S={1, 7, 133, 5421, 383911,  41793403,  6473328681, …,. }  
 
Note that the elements in this sequence are bounded from below by (2n-1)! 
 
Another sequence with very rapidly increasing elements is- 
 
                      f[1]=1,   f[2]=2 ,   f[3]=5,   f[4]=3126 
 
Can you find the next term f[5] ? Hint, it is a huge number of over eleven thousand digits. 
 
To generate the sequence of the powers of any integer N we can use the generating formula- 
 
                                  f[n+1]=Nf[n]   with  f[1]=1 
 
The cubes of the first six integers will read- 
 
                                   {1, 3, 9, 27, 81, 243} 
 
It is not always necessary to have the f[n]s be all real or have only positive signs. For example , the 
relation- 
 
                              f[n+1]=in    with f[1]=1 produces the cyclic sequence- 
 
                                  S= {1, i, -1, -i, 1, i, -1, -i, 1,…} 
 
The nth term in S will equal f[n]=cos(πn/2)+isin(πn/2) showing that all elements lie on  a unit radius 
circle in the complex plane.  
 



Another complex sequence follows from the generating formula- 
 
                                           f[n]=n exp{(iπ(n-1)/4}   
 

This produces the sequence- 
 

                                S= }....,22)1(,3,2)1(,1{ iii   
  
Here the magnitude of each element is just n. A plot of this sequence in the z=x+iy plane produces 
the spiral- 

                    
 
Several tears ago we introduced the concept of a number fraction defined by- 
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, where  (n) is the sigma function of number theory representing the sum of all integer divisors of n. 
What makes the number fraction of interest is that will vanish only if n is a prime p.  Thus 
f[2]=f[3]=f[5]=f[7]=f[11]=0 but f[4]=1/2 , f[6]=5/6, f[8]=3/4, f[9]=1/3, f[10]=7/10, and f[12]=5/4. A 
number fraction of zero thus yields the sequence- 
 
                                              {  2,   3,  5,  7,  11,  …} 
 
, which are just the prime numbers. We can pick up the primes in this sequence over any number 
range, say from 990 through 1010 , by carrying out the one line computer program- 
 
                            f:=(sigma(n)-n-1)/n;  for n from 990 to 1010 do {n, f}od; 



 
It yields just three primes  991, 997, and 1009 in this interval. Note that a mod(6) operation on each 
of these primes equals 1. This is to be expected considering that all primes above p=3 have the form 
6n±1. 
 
To conclude our discussion, we look at a sequence whose elements stay confined between 1 and 3 
for all n. This sequence is generated by- 
 
                    f[n+3]=f[n+2]-f[n+1]+f[n]      subject to  f[1]=1, f[2]=2, and f[3]=3 
 
It reads- 
 
                       S={1,  2,  3,  2, 1,  2,  3,  2,  1,  2,  3,  2,  1,  2,  3,  …} 
 
The sequence is cyclic with  1,2,3,2 being the repetitive sub-group. One can state that the element 
4k-3 always equals 1, the element 4k-1 always produces 3, and 2 is produced by 4k-2 or 4k. So the 
99th element in S will be 3. 
 
 
 


