
 DERIVATION OF  THE  STOKES  DRAG FORMULA   
 
In a remarkable 1851 scientific paper, G. Stokes first derived the basic formula  
for the drag  of a sphere( of radius r=a moving with speed Uo through a  viscous 
fluid of density ρand viscosity coefficient μ. The formula reads- 
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It applies strictly only to the creeping flow regime where the Reynolds number 

 /Re 0aU  is less than unity and is thus mainly concerned with spheres of 

very small diameter when the surrounding fluid is either a gas or a liquid. The 
formula has found a wide range of applications ranging from determining the basic 
charge of an electron to predicting the settling velocity of suspended sediments. In 
the bio-fluids area it is encountered when studying the settling rates of blood cells 
when centrifuged and in the determination of sedimentation rates of contaminants 
entering the lungs.  
 
Most introductory texts (and even more advanced fluid books) generally do not 
give a full derivation of Stokes’s Drag Law because of the mathematical 
complexity involved. We help remedy this situation here by giving a full derivation 
.Let me know if there is anything that is still not clear after you read this 
development. 
 
First one introduces a spherical coordinate system with the sphere of radius r=a 
placed at its center. The viscous and incompressible flow about the sphere will 
have only radial and polar angle dependent velocity components. The fact that the 
divergence of this velocity field is zero allows one to introduce the stream function 
r defined by-     
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Next one looks at the two momentum equations for a steady creeping flow. Using  
the fact that 2V can be replaced  by –curl(curl V)  for an incompressible fluid, 
these equations can, after a little manipulation ,  be re-written as- 
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where Q a differential operator defined as- 
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Eliminating p between these two momentum equations, one finds the fourth order 
PDE 
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Making the substitution  
 

                                                2sin)(rf  

 
allows one to reduce this equation to a 4th order ODE of the standard Euler type  
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Next, a simple substitution f=rk leads to a 4th order polynomial in k whose  roots 
are k=-1, 1, 2, and 4. Thus the general solution for f  becomes  
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We can evaluate the four constants A, B, C, and D from the fact that both velocity 
components vanish at the sphere surface at r=a and that Vr goes as Uo cos  as r 
gets large. This leads to the desired exact stream function for Stokes flow of  
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From this last result, and use of the definitions for the velocity components and 
radial pressure gradient given above, one obtains the explicit values- 
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The drag force can now be calculated by integrating the shear stress and normal 
stress over the entire surface of the sphere. In this calculation p is the normal stress 
and the shear stress has the form- 
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Carrying out  the integration involving the pressure first, one has that the force in 
the z direction due to the pressure field is 
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Next the force in the z direction due to viscous shear stress is 
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Adding things together we arrive at the famous Stokes Drag Law first derived by 
him over 150 years ago! Note that in this problem two thirds of the force on the 
sphere is due to viscous shear and only one third is due to pressure drag. 
 
When dealing with small spheres dropping with constant speed in a gravity field 
one must equate the Stokes drag to the effective downward force equal to the 
sphere weight minus the buoyancy force. This yields  
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From this result one can infer that a 20micron diameter iron sphere dropping in 
quiescent water will have a terminal downward velocity of just 1.5 mm/sec. The 
corresponding Reynolds number will be Re=0.015 and so lies well within the 
creeping flow regime. Since the terminal velocity is proportional to the square of 
the sphere diameter one could segregate out different size spheres from a mixed 
batch injected horizontally at constant speed. 
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