
 

TRICKS WHICH CAN BE USED TO SOLVE CERTAIN DEFINITE INTEGRALS 

You probably remember from your calculus class that there exists the identity- 

                           F(b)-F(a)=∫ 𝑓(𝑥)𝑑𝑥
௕

௔
   where dF(x)/dx=f(x) 

Related to this fundamental theorem one also has the Leibnitz-Feynman rule of differentiation 
under the integral sign. It reads- 

  d/dz[∫ 𝑓(𝑥, 𝑧)𝑑𝑥] = ∫
ௗ௙(௫,௭)

ௗ௭
𝑑𝑥

௕(௭)

௔(௭)
+ 𝑓(𝑏(𝑧), 𝑧)𝑑𝑏(𝑧)/𝑑𝑧 − 𝑓(𝑎(𝑧), 𝑧) 𝑑𝑎(𝑧)/𝑑𝑧

௕(௭)

௔(௭)
 

 Use of these two formulas  and certain exponential identities  such as- 

     exp(ix)=cos(x)+isin(x)      , cos(x)^2+sin(x)^2=0      and i^n=i^(n-4) 

allows one to evaluate many types of definite integrals. It is our purpose here to show that 
often very complicated looking  definite integrals produce very simple results. 

Let us begin with the integral- 

   I(a,b)=   ∫ sin(𝑎𝑥) exp (−𝑏𝑥)
ஶ

௫ୀ଴
𝑑𝑥 , 𝑤ℎ𝑒𝑟𝑒 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠     

To solve it we note that Im(exp(iax))=sin(ax)  . So I(a,b)=Im ∫ exp x(−𝑏 + 𝑖𝑎))
ஶ

௫ୀ଴
𝑑𝑥 . On 

integrating and putting in the specified limits, we find- 

                                I(a,b)=Im(1/(b-ia)=a/(b^2+a^2) 

Replacing  sin(ax) by cos(ax) will change the result to b/(b^2+a^2). 

Next we look at – 

                               J(n,a)=  ∫ 𝑥௡ exp(−𝑎𝑥) 𝑑
ஶ

௫ୀ଴
𝑥 

The fastest way to evaluate this definite integral is to note that this is the Lapalce transform of 
x^n with s replaced with a. But lapalce(x^n)=n!/s^(n+1). Hence we have- 

                                J(n,a)=n!/a^(n+1 

Setting a=1 and n to n-1, we get the important identity that the Gamma Function equals- 

             Γ(n)=∫ 𝑥(௡ିଵ) 𝑒𝑥𝑝(−𝑥) 𝑑𝑥
ஶ

௫ୀ଴
= (𝑛 − 1)! 

On setting n=1/2 we  have the identity- 

                               sqrt(π)=∫ exp(−𝑥) /𝑠𝑞𝑟𝑡(𝑥)𝑑𝑥
ஶ

௡ୀ଴
 

Consider next the identity- 



                M(a,b)=∫
ୱ୧୬(௔௫) ୣ୶୮(ି௕௫)

௫
𝑑𝑥

ஶ

௫ୀ଴
= arctan(a/b) 

How is this derived?. One way is to go under the integral sign(Leibnitz-Feynman Technique) and 
differentiate M with respect to a.This gets rid of the x in the denominator to yield- 

       dM/da= ∫ cos(𝑎𝑥) exp (−𝑏𝑥)
ஶ

௫ୀ଴
𝑥 = 𝑏/(𝑏ଶ + 𝑎ଶ) 

Solving for M we get- 

             M=∫ 𝑏/(𝑏ଶ + 𝑎ଶ)da=arctan(a/b) 

 after setting the integration constant to zero. Note that on setting a=1 and b=0, we get the 
interesting result that- 

               ∫ (sin(𝑥) /𝑥)𝑑𝑥 =
ஶ

௫ୀ଴
arctan(∞) = 𝜋/2. 

Another integral of zero to infinite limit is- 

                   N(a)=∫ exp(−𝑎𝑥ଶ) 𝑑𝑥
ஶ

௫ୀ଴
    with the constant ‘a’ positive and real 

 Letting u=(1/(2sqrt(aax^2 we find- 

                   N(a)=(1/(2sqrt(a))∫ exp(𝑢) /𝑠𝑞𝑟𝑡(𝑢)𝑑𝑢
ஶ

௫ୀ଴
𝑥 = 𝛤(0.5)/2𝑠𝑞𝑟𝑡(𝑎) 

On setting a=1 we get the important result- 

                   N(1)=∫ exp(−𝑥ଶ) 𝑑𝑥 =
ஶ

௡ୀ଴
sqrt(π)/2 

  In all of the above cases we had x extend from 0 to infinity . There are an infinite number of 
definite integrals where the range of x is much smaller. Take for example- 

                      T=  ∫
୪୬(௫)

ଵା௫
𝑑𝑥

ଵ

௫ୀ଴
  

To solve this definite integral we can expand 1/1+x) in a geometric series  to get- 

                    T=∑ (−1)^𝑛ஶ
௡ୀ଴ ∫ (𝑥^𝑛)ln (𝑥)𝑑𝑥

ଵ

௫ୀ଴
 

 But we know  the integral of x^n ln(x) from x= 0 to 1 is – 

       ∫ 𝑥௡ln (𝑥)
ଵ

௫ୀ଴
𝑑𝑥 = −1/(𝑛 + 1)^2      

So we have the infinite sum- 

              T=∑ (−1)௡ାଵ/(𝑛 + 1)^2ஶ
௡ୀ଴ =-1/1+1/4-1/9+1/16-… 

This starts to look a lot like the Euler result- 

           π/6=1+1/4+1/9+1/16+… 



Indeed we find T+π/6=(1/2)(π^2/6). This means that- 

                 ∫
୪୬(௫)

ଵା௫
𝑑𝑥 = −

గ

ଵଶ
= 0.261799 …

ଵ

௫ୀ଴
 

As another integral with finite range, consider- 

                         V=∫
ଵି௫

(ଵା௫)
𝑑𝑥

ଵ

௡ୀ଴
 

This is easy to integrate by the variable substitution u=1+x. It yields- 

                V=∫
ଶି௨

௨
𝑑𝑢

ଶ

௫ୀଵ
=-1+2ln(2) 

As a bit more complicated finite integral consider- 

         W(a)=∫ 𝑑𝑥/(1 + acos(𝑥))
ଶగ

௫ୀ଴
= 2𝜋/𝑠𝑞𝑟𝑡(1 − 𝑎ଶ) 

Here we make use of the identity- 

              Cos(2z)=2cos(z)^2-1     with     x=2z 

A little manipulation then produces- 

      W(a)=∫ 2 𝑑𝑧/((1 − 𝑎) + 2 a cos(𝑧)ଶ)
గ

௭ୀ଴
 

This integral can be evaluated exactly for 0<a<1, yielding- 

W(1/2)=4π/sqrt(3), W(1/4)=8π/sqrt(15), and W(1/8)=16π/63 

From these results a generalization yields- 

W(1/n)=2nπ/sqrt(n^2-1)  or the equivalent W(a)= ଶగ

௦௤௥௧(ଵି௔మ)
 𝑤𝑖𝑡ℎ  0 < 𝑎 < 1. 

 

As the above calculations have shown, there are many different ways to evaluate definite 
integrals. The most powerful approach is to use variable substitutions followed by integration 
under the integral sign, followed by use of partial fractions, and finally using series expansions. 
If all of these fail, it is always possible to integrate a definite integral to any desired degree of 
accuracy numerically provided one  carefully treats any  singular points lying in the range of 
integration. 
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