
  
 

        USE OF LEGENDRE POLYNOMIALS TO CONSTRUCT ACCURATE                             
TABLES  FOR THE TRIGONOMETRIC FUNCTIONS 

 
About a decade ago while I was playing around with integrals containing Legendre 
Polynomials P(n,x) it became clear to me that certain integrals involving the even 
Legendre polynomials P(2n,x), when multiplied by certain functions f(ax) and the 
product integrated over the range 0<x<1, can lead to excellent approximations for certain 
functions g(a). In particular we found that the integral- 
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yields excellent approximations for tan(a) to  any desired order of accuracy by making  n 
large enough. You can find a summary of these results, written in conjunction with my 
colleague and co-author Sidey Timmins, by clicking on the following - 
 
                       http://www2.mae.ufl.edu/~uhk/IEEETrigpaper8.pdf 
 
This method for quickly finding approximations for certain functions by using Legendre 
Polynomials of high order is now referred to in the literature as the KTL Method. See- 
 
https://wiki.tcllang.org/page/Trig+Procedures+for+degree+measures+as+sind%2C+cosd
%2C+tand%2Cetc    
 
Although I have not looked at this approximation method again for nearly a decade, in 
the last few months my interest has been revived especially in regard to finding additional 
functions f(ax) which can lead to interesting and improved approximations for certain 
analytic functions g(a). For my latest results in this area click on- 
 
                      http://www2.mae.ufl.edu/~uhk/KTL-METHOD.pdf 
 
It is the purpose of the present note to look further at using the particular function 
f(ax)=cos(ax) for larger n and thus finding approximations to trigonometric functions of 
higher accuracy than previously achieved. It should be noted that the KTL method places 
no limits on the size of n one can use so that fifty digit accurate approximations for tan(1) 
and hence sin(a) and cos(a) should be possible. With aide of a PC, using a mathematics 
program such as MAPLE, one should be able to handle the very large polynomial  
quotients arising for large n without having to write out these quotients by hand. 
 
We begin our analysis by noting that the above integral J(a,n) can always be expanded as 
                       
                     J(a,n)=M(a,n)cos(a)+N(a,n)sin(a) 
 
 , where N and M are long polynomials in ‘a’ of order 2n-1 and 2n, respectively, for a 
given n. As n gets large the integral J(a,n) will head toward zero, leaving us with the 
approximation- 
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This approximation, as we shall see, gives multiple place accuracy for tan(a) with the 
accuracy increasing with increasing n. 
 
Here is the simple MAPLE computer procedure we use to find the  approximation  
TANAPPROX(a,n)- 
 
 (1)-choose a value for n 
 (2)-next expand J(a,n) = int(cos(a*x)*P(2*n,x),x=0..1) to produce   
M(a,n)cos(a)+N(a,n)sin(a) 
 (3)-then use  collect(J(a,n),{sin(a),cos(a)}) to separate  the sin(a) from the cos(a) terms 
 (4)- find TANAPPROX(a,n) by doing evalf(-M(n,a)/N(n,a),k), with k being the number              
of digits desired. 
 
As a first calculation we take n=2. It yields- 
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and produces the plot- 
 

              
It is amazing how, for such a low value of n, the approximation  lies so close to the actual 
tan(a) values when |a|<2. The approximation yields 1.557377..compared to 
tan(1)=1.557407724.. . Also it shows an infinity at a=1.571233.. compared to the exact 
value of a=/2=1.570796.. 



  
 

 
To get a feel of how our  TANAPPROC(a,n) approaches the value of tan(a), we carried 
out calculations at a=/4 corresponding to the angle 45deg for n=2,4,6,8,10 and 12. The 
results are summarized in the following table- 
 
     

n tan(/4)-TANAPPROX(/4,n) 
2 0.21312x10-5 
4 0.45429x10-15 
6 0.18600x10-26 
8 0.55742x10-39 
10 0.23471x10-52 
12 0.20501x10-66 

 
We see that the accuracy of the tan(a) approximation for an angle of 45deg (equivalent to 
a=/4) goes up about five decimal places per unit increase in n. So we estimate an 
approximation  for tan(/4) will be accurate to100 decimal places when n=18. 
 
To construct an accurate trigonometric table (or computer subroutine) good to 50 decimal 
places over the  range 0<a</4 should be possible using TANAPPROX(a,10). One 
knows from elementary trigonometry that if tan(x) is known between 0 and /4 all values 
for tan(a) outside this range will also be known. This follows from the identity- 
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It is also known that- 
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 We are here using the abbreviation T=TANAPPROX(a,10) to simplify the bookkeeping..           
 
To get the value of the  elements for a trig table at every 5deg intervals over 0a/4 we 
use the two line program- 
 
a:=(/4-k/36);   for k from 0 to 9 do 
    {45*(1-k/9),evalf(T,50),evalf(1/sqrt(1+T^2),50),evalf(T/sqrt(1+T^2),50)}od; 
 
This entire table is calculated in a split second. It being rather lengthy, I just give you the 
50 digit long accurate results for 30deg (a=/6)- 
 
      tan(/6)= 0.57735026918962576450914878050195745564760175127012 



  
 

      cos(/6)= 0.86602540378443864676372317075293618347140262690519 
      sin(/6)= 0.50000000000000000000000000000000000000000000000000 
 
We are aware of no other existing program which can match the speed and simplicity of 
the present KTL method in finding these values. When seeing something like this, my 
mind often wanders back to feel sorry for the WWII British mathematicians who in pre-
electronic computer days spent countless hours producing logarithmic and trigonometric 
tables accurate to no more than 20 places of decimal. 
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